Researchers say ocean currents cause microbes to filter light

The same phenomenon occurs in the ocean, in a flask and in the art of Paul Matisse.


Adding particles to liquids to make currents visible is a common practice in the study of fluid mechanics, one that was adopted and perfected by artist Paul Matisse in sculptures he calls Kalliroscopes. Matisse’s glass-enclosed liquid sculptures contain an object whose movement through the liquid creates whorls that can be seen only because elongated particles trailing the object align with the direction of the current; light reflects off the particles, making the current visible to the viewer.

Professor Roman Stocker and his research team recently demonstrated that this same phenomenon is responsible for the swirling patterns scientists typically see when they agitate a flask containing microbes in water; many microbes are themselves elongated particles that make the whorls visible. More importantly, they say this phenomenon occurs in the ocean when elongated microbes caught in a current align horizontally with the ocean surface, affecting how much light goes into the ocean and how much bounces off as backscatter.

Because many ocean microbes, like large phytoplankton, have either an elongated shape or live in communities of long chains, this orientation to ocean currents could have a substantial effect on ocean light — which in turn influences photosynthesis and phytoplankton growth rates — as well as on satellite readings of light backscatter used to inform climate models or assess algal blooms.

To read more about this, visit the Department of Civil and Environmental Engineering website: http://cee.mit.edu/news/releases/2011/microbial-alignment


Topics: Civil and environmental engineering, Marine biology, Microfluidics

Back to the top