Skip to content ↓

Topic

School of Engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 2743 news clips related to this topic.
Show:

Reuters

A new analysis of years of vocalizations by sperm whales in the eastern Caribbean has provided a fuller understanding of how whales communicate using codas, reports Will Dunham of Reuters. Graduate student Pratyusha Sharma explained that: "The research shows that the expressivity of sperm whale calls is much larger than previously thought."

New Scientist

New Scientist reporter Clare Wilson writes that a new analysis by MIT researchers of thousands of exchanges made by east Caribbean sperm whales demonstrates a communication system more advanced than previously thought. “It’s really extraordinary to see the possibility of another species on this planet having the capacity for communication,” says Prof. Daniela Rus.

TechCrunch

Researchers from MIT and elsewhere have uncovered a phonetic alphabet used by sperm whales, which provides “key breakthroughs in our understanding of cetacean communication,” reports Brain Heater for TechCrunch. “This phonetic alphabet makes it possible to systematically explain the observed variability in the coda structure,” says Prof. Daniela Rus, director of CSAIL. “We believe that it’s possible that this is the first instance outside of human language where a communication provides an example of the linguistic concept of duality of patterning. That refers to a set of individually meaningless elements that can be combined to form larger meaningful units, sort of like combining syllables into words.”

Associated Press

Associated Press reporter Maria Cheng spotlights a new study by MIT researchers that identifies a “phonetic alphabet” used by whales when communicating. “It doesn’t appear that they have a fixed set of codas,” says graduate student Pratyusha Sharma. “That gives the whales access to a much larger communication system.” 

NPR

Using machine learning, MIT researchers have discovered that sperm whales use “a bigger lexicon of sound patterns” that indicates a far more complex communication style than previously thought, reports Lauren Sommers for NPR. “Our results show there is much more complexity than previously believed and this is challenging the current state of the art or state of beliefs about the animal world," says Prof. Daniela Rus, director of CSAIL. 

New York Times

MIT researchers have discovered that sperm whales use a “much richer set of sounds than previously known, which they call a ‘sperm whale phonetic alphabet,’” reports Carl Zimmer for The New York Times. “The researchers identified 156 different codas, each with distinct combinations of tempo, rhythm, rubato and ornamentation,” Zimmer explains. “This variation is strikingly similar to the way humans combine movements in our lips and tongue to produce a set of phonetic sounds.”

New Scientist

Prof. Giovanni Traverso and colleagues have developed a new ingestible sensor that could be used to help diagnose gastrointestinal conditions, reports Jeremy Hsu for New Scientist. “Eventually, the futuristic device could provide treatments for gut illnesses through electrical stimulation via additional electrodes embedded in the sensor,” Hsu notes.  

NPR

Prof. Jacopo Buongiorno talks with Steve Curwood of Living on Earth about new investments in nuclear power generation, advanced reactors and waste disposal. He notes roughly half the clean energy in the U.S. comes from nuclear, with great potential due to its adaptability. “The nice thing about nuclear is that it’s a fairly versatile energy source,” explains Buongiorno. “It can give you heat, if you want heat. It can give you electricity if you want electricity. It can give you hydrogen if you need hydrogen, or some kind of synthetic fuel for transportation." 

Time Magazine

Prof. Linda Griffith and Stuart Orkin '67 were named to this year’s Time 100 Health list, which recognizes innovators leading the way to new health solutions. Griffith, who was honored for her work engineering a uterine organoid to study endometriosis, explains that in the future engineered organoids could be used to find the most effective treatments for patients. “We have all the genetic information and all the information from the patient’s exposure to infections, environmental chemicals, and stress that would cause the tissues to become deranged in some way, all captured in that organoid,” Griffith explains. 

USA Today

Prof. Yoon Kim speaks with USA Today reporter Eve Chen about how AI can be used in everyday tasks such as travel planning. “AI is generally everywhere,” says Kim. “For example, when you search for something – let’s say you search for something on TripAdvisor, Hotels.com – there is likely an AI-based system that gives you a list of matches based on your query.” 

Axios

Axios reporter Alex Fitzpatrick spotlights MightyFly, an aviation startup founded by Manal Habib ’11 that is developing a large, autonomous electric vehicle takeoff and landing cargo drone that has been approved by the Federal Aviation Administration for a flight corridor. "The use case is B2B expedited logistics," says Habib. "Think of deliveries from a manufacturer to suppliers. Think of deliveries from a lab to a hospital, or from a warehouse or pharmacy, as well as to improve deliveries to an oil rig or to a farm or a mining site, as well as for DOD use cases."

The Independent

MIT researchers have uncovered the “photomolecular effect,” a process “that demonstrates for the first time that water can evaporate with no source of heat using light alone,” reports Anthony Cuthbertson for The Independent. The “discovery could impact everything from climate change calculations to weather forecasts, while also opening up new practical applications for things like energy and clean water production,” writes Cuthbertson.

ShareAmerica

ShareAmerica reporter Lauren Monsen spotlights Prof. Dina Katabi for her work in advancing medicine with artificial intelligence. “Katabi develops AI tools to monitor patients’ breathing patterns, hear rate, sleep quality, and movements,” writes Monsen. “This data informs treatment for patients with diseases such as Parkinson’s, Alzheimer’s, Crohn’s, and ALS (amyotrophic lateral sclerosis), as well as Rett syndrome, a rare neurological disorder.”

New Atlas

Researchers at MIT have discovered that “light in the visible spectrum is enough to knock water molecules loose at the surface where it meets air and send them floating away,” reports Michael Franco for New Atlas. “While the distinction between light-caused evaporation and heat-caused evaporation might not seem like a big one, the researchers say it could not only have a big impact on the way future evaporative projects are executed, but that it could also explain a long-standing discrepancy involving clouds,” writes Franco.

Interesting Engineering

Interesting Engineering reporter Rizwan Choudhury spotlights a new study by MIT researchers that finds light can cause evaporation of water from a surface without the need for heat. The photomolecular effect “presents exciting practical possibilities,” writes Choudhury. “Solar desalination systems and industrial drying processes are prime candidates for harnessing this effect. Since drying consumes significant industrial energy, optimizing this process using light holds immense promise.”